

- 1. This document was created to support maximum accessibility for all learners. If you would like to print a hard copy of this document, please follow the general instructions below to print multiple slides on a single page or in black and white.
- 2. This handout is for reference only. Non-essential images have been removed for your convenience. Any links included in the handout are current at the time of the live webinar, but are subject to change and may not be current at a later date.
- 3. Copyright: Images used in this course are used in compliance with copyright laws and where required, permission has been secured to use the images in this course. All use of these images outside of this course may be in violation of copyright laws and is strictly prohibited.
- 4. Social Workers: For additional information regarding standards and indicators for cultural competence, please review the NASW resource: Standards and Indicators for <u>Cultural Competence in Social Work Practice</u>
- 5. Need Help? Select the "Help" option in the member dashboard to access FAQs or contact us.

How to print Handouts

On a Mac

- Open PDF in Preview
- Click File
- Click Print
- Click dropdown menu on the right "preview"
- Click layout
- Choose # of pages per sheet from dropdown menu
- Checkmark Black & White if wanted.

On a PC

- Open PDF
- Click Print
- Choose # of pages per sheet from dropdown menu
- Choose Black and White from "Color" dropdown

No part of the materials available through the continued.com site may be copied, photocopied, reproduced, translated or reduced to any electronic medium or machine-readable form, in whole or in part, without prior written consent of continued.com, LLC. Any other reproduction in any form without such written permission is prohibited. All materials contained on this site are protected by United States copyright law and may not be reproduced, distributed, transmitted, displayed, published or broadcast without the prior written permission of continued.com, LLC. Users must not access or use for any commercial purposes any part of the site or any services or materials available through the site.

Dysarthria: Best Practices for Assessing Intelligibility

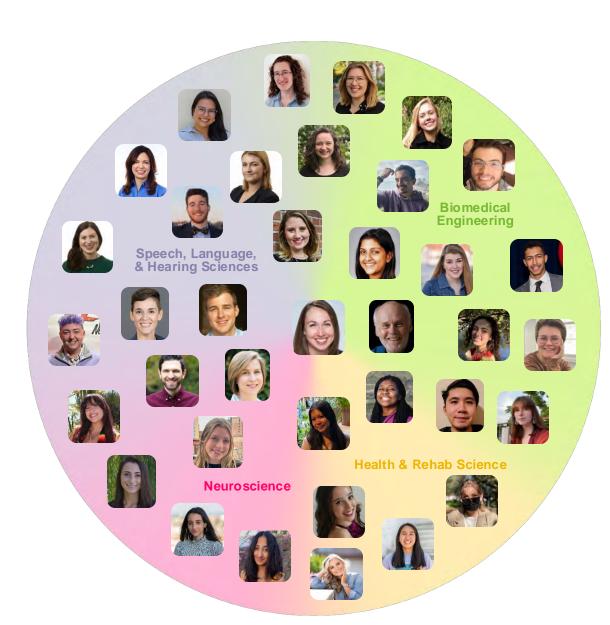
Kimberly L. Dahl, MS, CCC-SLP

Kimberly L. Dahl, MS, CCC-SLP

 Kimberly Dahl (she/her) is a speech-language pathologist with clinical expertise in voice, swallowing, and motor speech disorders. She is a doctoral candidate at Boston University where she researches speech motor control in people with Parkinson's disease and voice perceptions of transgender and nonbinary people.

Disclosures

- **Presenter Disclosure:** Financial: Kimberly Dahl was paid an honorarium for this presentation. They receive a stipend from Boston University and grant funding from the National Institute on Deafness and Other Communication Disorders. *Non-financial:* Kimberly Dahl has no relevant non-financial relationships to disclose.
- Content Disclosure: This learning event does not focus exclusively on any specific product or service.
- Sponsor Disclosure: There is no external sponsor for this course.



Learning Outcomes

After this course, participants will be able to:

- List two valid methods of assessing intelligibility.
- Describe common methods of assessing intelligibility.
- Identify three factors that may bias intelligibility estimates.

CONTINUED°

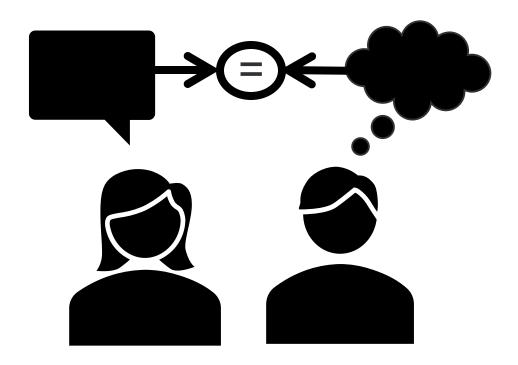
National Institute on Deafness and Other Communication Disorders

What is dysarthria?

A class of motor speech disorders characterized by "abnormalities in the strength, speed, range, steadiness, tone, or accuracy of movements required for... speech production"¹

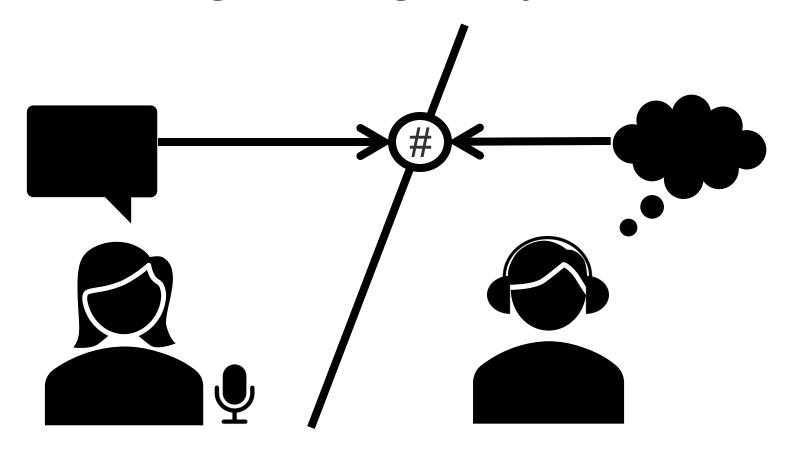
- Flaccid
- Spastic
- Ataxic
- Unilateral upper motor neuron

- Hypokinetic
- Hyperkinetic
- Mixed
- Undetermined



What is intelligibility?

- The degree to which a speaker's message is understood by a listener¹
- A perceptual outcome
- Core functional deficit of the dysarthrias
- Important outcome in both clinic & research¹⁻³
- Not predictive of etiology, dysarthria subtype, or speech subsystem(s) impaired

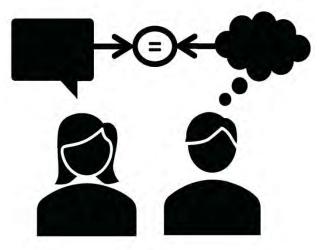


Assessing intelligibility

Assessing intelligibility

Big decisions

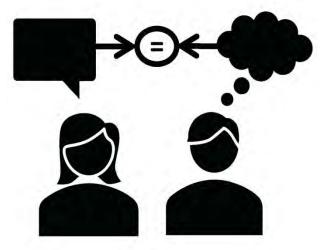
- 1 Method
- 2 Speech sample
- 3 Listeners


The questions

The evidence

The takeaways

How do I assess intelligibility?


- Formal assessment
- Informal assessment
 - ▲ Oral mechanism exam
 - ▲ Diadochokinesis (e.g., /pataka/)
 - ◆ A Cranial nerve exam

Images: Microsoft 365 license

How do I assess intelligibility?

- Formal assessment
- Informal assessment
 - Oral mechanism exam
 - Diadochokinesis (e.g., /pataka/)
 - Cranial nerve exam

Images: Microsoft 365 license

How do I assess intelligibility?

Formal assessments

- AIDS: Assessment of Intelligibility of Dysarthric Speech¹
- SIT: Speech Intelligibility Test²
- FDA: Frenchay Dysarthria Assessment³
- DEB: Dysarthria Examination Battery⁴
- Dysarthria Profile⁵

Reliable?
Valid?
Applicable?

(1 Method

The evidence

Instrument	Reliable	Valid
AIDS/SIT	✓ ✓	~
Frenchay Dysarthria Assessment	✓ ✓	~ ~
Dysarthria Examination Battery	✓ ✓	~ ~
Dysarthria Profile	-	_

(1 Method

Interval scale

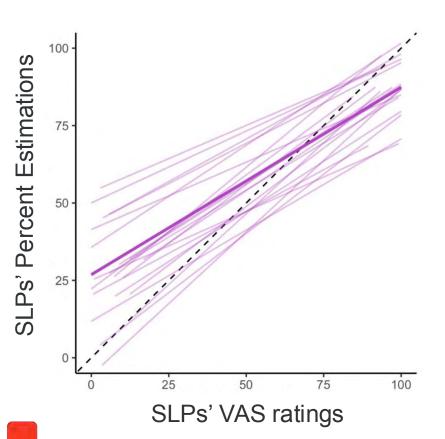
How do I assess intelligibility?

Informal assessments

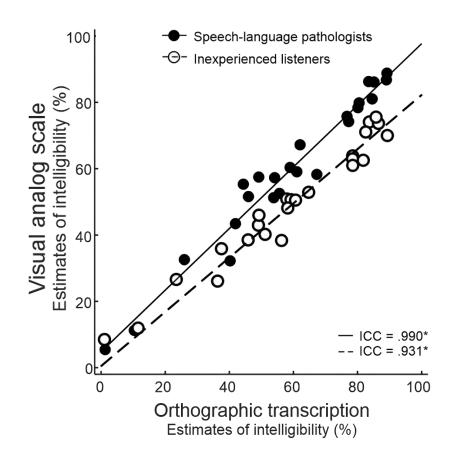
• Orthographic transcription	More objective	Time- consuming
 Visual analog scale (VAS) 	More variable	Efficient
 Percent estimation 		

The evidence

Orthographic transcription vs VAS


- Strong¹ / moderate² relationships
- Inexperienced listeners

The evidence


Hirsch et al., 2022

Percent estimation vs VAS Speech-language pathologists (SLPs)

Dahl et al., in prep

Transcription vs VAS SLPs & inexperienced listeners

The takeaways

- Formal assessments are useful if available, reliable, valid, and appropriate for your client/participant
- Informal assessments
 - Prioritize objectivity with orthographic transcription
 - Prioritize efficiency with visual analog scale

valid

What kind of speech sample should I collect?

Words
Phrases
Sentences
Passages
Conversation

More
ecologically

More
hases
More
ecologically

More
hases
More
ecologically

More
hases
More
ecologically

More
ecologically

What kind of speech sample should I collect?

Words

Phrases

Sentences

Passages

Conversation

Formal assessments \$

TIMIT Sentences¹ \$

Harvard Sentences²

Personalized sentences

What kind of speech sample should I collect?

Key considerations

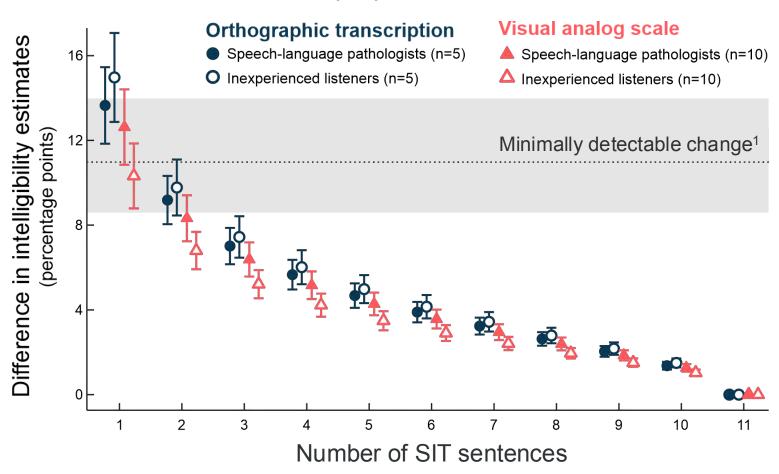
- Repeatability
- Reading ability
- Phonetic characteristics
 - Phonetic coverage: Every speech sound is included
 - Phonetic balance: Speech sounds are included in proportion to how common they are in the language
- Lexical characteristics
 - Word frequency: How common the words are in the language
 - Neighborhood density: Number of similar-sounding words in the language

² Speech sample

Source	Repeatable	Reading required	Phonetic coverage	Phonetic balance	Lexical features
AIDS/SIT Sentences	✓	✓	?	?	~ 5
TIMIT Sentences	✓	✓	?	√ 6	?
Harvard Sentences	✓	✓	?	~*	?
Personalized sentences	~	~	?	?	?
Rainbow Passage ¹	×	~	√ 6	√ 6	?
Grandfather Passage ²	×	~	x 6	√ 6	?
Caterpillar Passage ³	×	~	√ 6	√ 6	?
Northwind Passage ⁴	×	~	x 6	√ 6	?
Conversation	~	×	?	?	?

How long should the speech sample be?

- 11 AIDS/SIT Sentences
- 10 Harvard Sentences
- # TIMIT Sentences determined by user
- Personalized sentences, passages, and conversational samples vary



(2

Speech sample

The evidence

Dahl et al., in prep: Number of sentences

The takeaways

- Repeatable stimuli can track treatment progress or disease progression
- Standardized stimuli may control phonetic & lexical confounds
- Conversation samples eliminate reading burden
- Prioritize efficiency by reducing number of sentences...?

C3 Listeners

Can I be the listener?

- Access to other listeners differs by setting
- Familiarity with a speaker may affect the listener's comprehension

C3 Listeners

The evidence

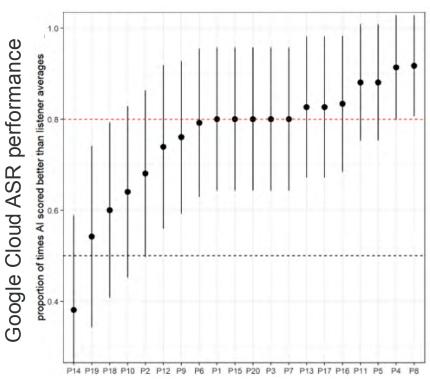
Familiar vs unfamiliar listeners

- Familiar listeners understood more words than unfamiliar^{1,2}
- Familiarity boosted comprehension by 20%^{1,2}

Ca Listeners

Can Siri be the listener?

Automated speech recognition (ASR)


- Fast
- Free
- Easy to access
- May address familiarity concern
- Ecologically valid, for some speakers

C3 Listeners

The evidence

Moya-Galé et al., 2022 Google Cloud ASR vs human transcription

Speaker with dysarthria

Gutz et al., 2022
Google Cloud ASR vs human transcription

- Strong, nonlinear relationship between automated and human transcriptions
- Poorest performance for mildly dysarthric speech

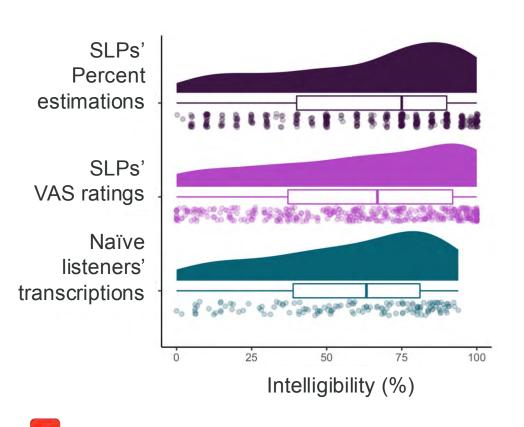
Ca Listeners

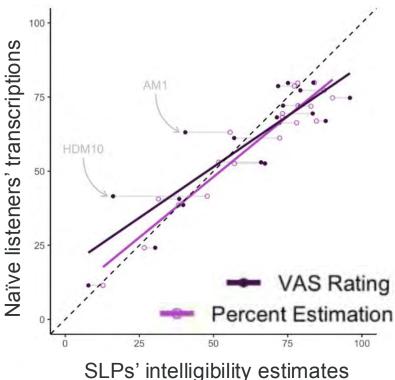
Who should I recruit as the listener?

Listeners inexperienced with dysarthric speech

- Capture daily interactions outside of the clinic/lab
- Harder to recruit in clinical settings

Listeners experienced with dysarthric speech

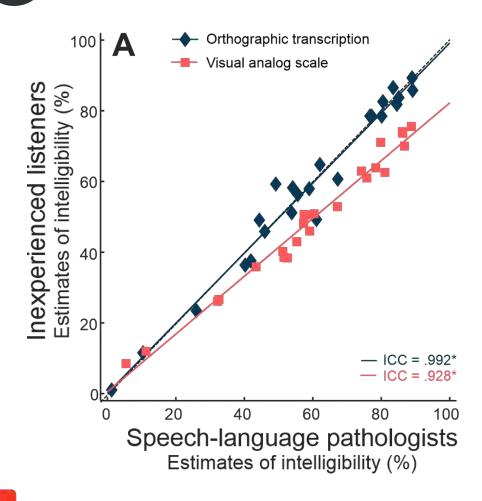

- Allow comparison across clinical settings
- Harder to recruit in research settings



C3 Listeners

The evidence

Hirsch et al., 2022: SLPs vs inexperienced listeners



Listeners

The evidence

Dahl et al., in prep: SLPs vs inexperienced listeners

Ca Listeners

How many listeners do I need?

- Variability in intelligibility measures
- Multiple listeners reduce measurement error

C3 Listeners

The evidence

- More listeners = more stable and accurate intelligibility estimates
- As few as two listeners for accurate measurement¹
 - Inexperienced listeners
 - SIT sentences
 - 7% change as accuracy benchmark

3 Listeners

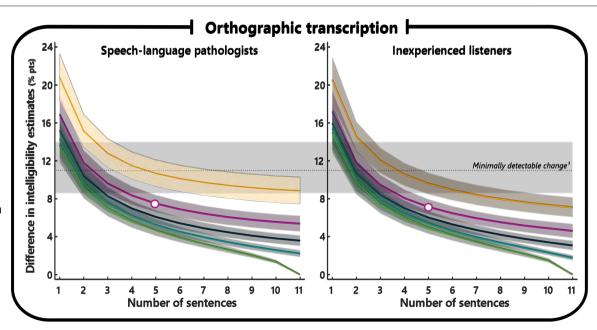
The takeaways

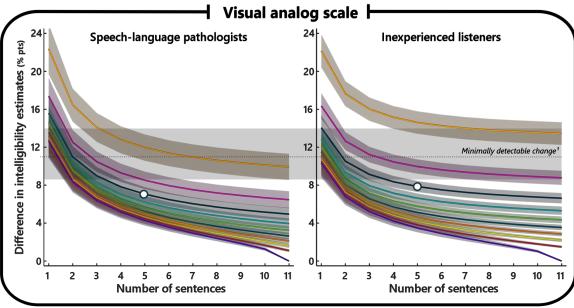
- Familiar listeners may not capture overall intelligibility
- Automated assessment—promising but preliminary
- Experienced listeners may overestimate intelligibility with some assessment methods
- As few as two listeners needed...?

Tying it together

Do method, speech sample, and listeners interact?

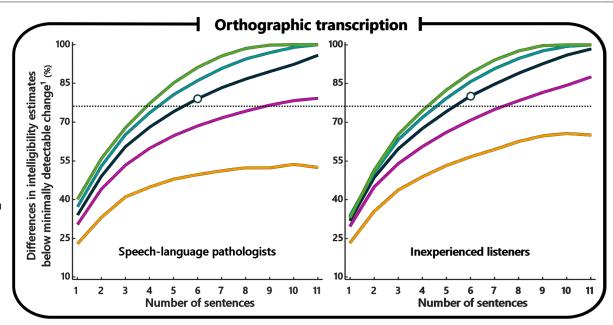
- Method

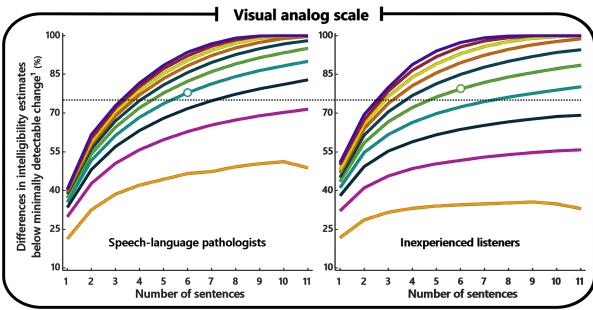

 Multiple valid options that prioritize objectivity or efficiency
- Speech sample
 As few as three SIT sentences... if you have 5-10 listeners¹
- Listeners
 As few as two listeners... if they transcribe 11 SIT sentences²


Tying it together

The evidence

Dahl et al., in prep




Tying it together

The evidence

Dahl et al., in prep

Summary

The takeaways

(1 Method

- 2 Speech sample
- 3 Listeners
- What type of assessments do I have access to?
- How much time do I have to assess intelligibility?
- What speech samples do I have or can I collect?
- What type of listener can I easily recruit?
- How many listeners can I recruit?

Questions?

Kimberly Dahl dahl@bu.edu

- Abur, D., Enos, N. M., & Stepp, C. E. (2019). Visual analog scale ratings and orthographic transcription measures of sentence intelligibility in Parkinson's disease with variable listener exposure. *American Journal of Speech-Language Pathology*, 28(3), 1222–1232.
- Borrie, S. A., McAuliffe, M. J., Liss, J. M., Kirk, C., O'Beirne, G. A., & Anderson, T. (2012).
 Familiarisation conditions and the mechanisms that underlie improved recognition of dysarthric speech. *Language and Cognitive Processes*, 27(7–8), 1039–1055.
- Dahl, K. L., Balz, M. Diaz Cadiz, M., & Stepp. C. E. (under review). Quantity of speech presented to listeners affects their estimations of the intelligibility of people with Parkinson's disease.
- Darley, F. L., Aronson, A. E., & Brown, J. R. (1975). Motor speech disorders (3rd ed.).
 Philadelphia: WB Saunders Co.
- D'Innocenzo, J., Tjaden, K., & Greenman, G. (2006). Intelligibility in dysarthria: Effects of listener familiarity and speaking condition. *Clinical Linguistics & Phonetics*, *20*(9), 659–675.
- Drummond, S. S. (1993). *Dysarthria examination battery*. Communication Skill Builders.
- Duffy, J. R. (2020). *Motor speech disorders: Substrates, differential diagnosis, and management* (4th ed.). Elsevier.

- Enderby, P. (1980). Frenchay dysarthria assessment. *British Journal of Disorders of Communication*, *15*(3), 165-173.
- Fairbanks, G. (1960). Voice and Articulation Drillbook (2nd ed.). Harper & Row.
- Garofolo, J. S., Lamel, L. F., Fisher, W. M., Fiscus, J. G., Pallett, D. S., Dahlgren, N. L., & Zue, V. (1993). TIMIT Acoustic-Phonetic Continuous Speech Corpus LDC93S1. Web Download. Philadelphia: Linguistic Data Consortium.
- Gurevich, N., & Scamihorn, S. L. (2017). Speech-language pathologists' use of intelligibility measures in adults with dysarthria. *American Journal of Speech-Language Pathology*, 26(3), 873–892.
- Gutz, S. E., Stipancic, K. L., Yunusova, Y., Berry, J. D., & Green, J. R. (2022). Validity of off-the-shelf automatic speech recognition for assessing speech intelligibility and speech severity in speakers with amyotrophic lateral sclerosis. *Journal of Speech, Language, and Hearing Research, 65*(6), 2128–2143.
- Hirsch, M. E., Thompson, A., Kim, Y., & Lansford, K. L. (2022). The reliability and validity of speech-language pathologists' estimations of intelligibility in dysarthria. *Brain Sciences*, 12(8), Article 8.

- IEEE Recommended Practice for Speech Quality Measurements. (1969). *IEEE Transactions on Audio and Electroacoustics*, 17(3), 225–246.
- Kent, R. D., Weismer, G., Kent, J. F., & Rosenbek, J. C. (1989). Toward phonetic intelligibility testing in dysarthria. *Journal of Speech and Hearing Disorders*, *54*(4), 482–499.
- Lammert A. C., Melot, J., Sturim, D. E., Hannon, D. J., DeLaura, R., Williamson, J. R., Ciccarelli, G., & Quatieri, T. F. (2020). Analysis of phonetic balance in standard English passages. *Journal of Speech, Language, and Hearing Sciences, (63)*4, 917-930
- Moya-Galé, G., Walsh, S. J., & Goudarzi, A. (2022). Automatic assessment of intelligibility in noise in Parkinson disease: Validation study. *Journal of Medical Internet Research*, 24(10), e40567.
- Patel, R., Connaghan, K., Franco, D., Edsall, E., Forgit, D., Olsen, L., & Russell, S. (2013). "The Caterpillar": A novel reading passage for assessment of motor speech disorders.
- Robertson, S. J. (1982). Dysarthria Profile. Winslow.

- Stipancic, K. L., & Tjaden, K. (2022). Minimally detectable change of speech intelligibility in speakers with multiple sclerosis and Parkinson's disease. *Journal of Speech, Language, and Hearing Research*, 65(5), 1858–1866.
- Stipancic, K. L., Tjaden, K., & Wilding, G. (2016). Comparison of intelligibility measures for adults with Parkinson's disease, adults with multiple sclerosis, and healthy controls. *Journal of Speech, Language, and Hearing Research, 59*(2), 230–238.
- Stipancic, K. L., Wilding, G., & Tjaden, K. (2023). Lexical characteristics of the Speech Intelligibility Test: Effects on transcription intelligibility for speakers with multiple sclerosis and Parkinson's disease. *Journal of Speech, Language, and Hearing Research*, 1–17.
- Yorkston, K. M., & Beukelman, D. R. (1984). Assessment of Intelligibility of Dysarthric Speech. Pro-ed.
- Yorkston, K. M., Beukelman, D. R., & Tice, R. (1996). Speech Intelligibility Test [Computer software]. Tice Technologies.

Congratulations!

- You completed the course and can move on to the exam!
- From your account:
 - Go to pending Courses
 - Choose take exam